In-Rail-Bus
Bus system in DIN-rail

Order reference
Carrier profile 15:
250 mm: KO 4303-257-5.4; Art.-Nr.: 0063838
500 mm: KO 4303-257-5.2; Art.-Nr.: 0061802
750 mm: KO 4303-257-5.7; Art.-Nr.: 0063866
1000 mm: KO 4303-257-1; Art.-Nr.: 0060632
Carrier profile 7,5:
250 mm: KO 4303-257-6.4; Art.-Nr.: 0063839
500 mm: KO 4303-257-6.2; Art.-Nr.: 0063864
750 mm: KO 4303-257-6.7; Art.-Nr.: 0063865
1000 mm: KO 4303-257-2; Art.-Nr.: 0060719
BUS PCB:
250 mm: KO 4303-256-1.6; Art.-Nr.: 0063837
500 mm: KO 4303-256-1.2; Art.-Nr.: 0061804
750 mm: KO 4303-256-1.7; Art.-Nr.: 0063861
1000 mm: KO 4303-256-1; Art.-Nr.: 0060631
Carrier rail cover:
250 mm: KO 4303-158-2.4; Art.-Nr.: 0063836
500 mm: KO 4303-158-2.2; Art.-Nr.: 0061806
750 mm: KO 4303-158-2.7; Art.-Nr.: 0063862
1000 mm: KO 4303-158-2.1; Art.-Nr.: 0060630
Safety cap, Right: KO 4303-158-3; Art.-Nr.: 0060722
Safety cap, Left: KO 4303-158-4; Art.-Nr.: 0060723
Spring contact block without coding: KO 4303-153.2; Art.-Nr.: 0060720 (with Au-contacts)
Spring contact block with coding: KO 4303-153.4; Art.-Nr.: 0060721 (with Au-contacts)

Plastics
Carrier profile: Polyamide (PA66) (1)
Carrier-rail cover: Polyamide (PA6) (2)
Spring contact block: Polyamide (PA6) and Polyamide (PA46) (3)
Safety cap (right/left): Polycarbonate (PC) (4)

Temperature withstand:
complying with Vicat
PA66: 205 °C (B50)
PA6: 144 °C
PA46: 138 °C
PC: > 290 °C
compl. with EN 75-1/-2 (0,45 MPa):
PA66: 250 °C
PA6: 80 °C
PA46: 190 °C
PC: > 290 °C

Flame retardancy
complying with UL 94: V-0
No. of BUS rails: 5; variants, on request
Spring contact material: copper, tinned gold plated
BUS PCBs
PCB thickness: 1,5 mm
Cu-coating thickness: min. 70 µm
Contact surface: HAL/Sn100 or Au 0,6 - 0,8 µm
Max. contact resistance
Spring contact block - Bus element: ≤ 20 mΩ
Max. current carrying capacity: 5 A (per BUS rail)
Max. voltage
BUS rail to BUS-rail: AC 63 V
BUS rail to DIN-rail: AC 63 V
BUS rail to BUS-rail: AC 30 V
BUS rail to DIN-rail: AC 30 V

All specifications correspond to the technology used at time of publication.
We reserve the right to make improvements and changes of a technical nature at any time.
Technical Data

Contact pressure
Spring contact to BUS rail: 100 cN (double contact)
Spring contact block fixing: The use of temperature stable materials allows soldering without the need for shielding cover

Creepage current resistance
Carrying profile, carrier rail cover
PA6: CTI 600 = insulating material I DIN EN 60 664-1
Spring contact block
PA6: CTI 375 = insulating material III a DIN EN 60 664-1
PA4.6: CTI < 400 = insulating material III a
Safety caps
PC6: CTI 175 = insulating material III a DIN EN 60 664-1
Carrier profile
PA66: CTI 500 = insulating material II DIN EN 60 664-1

Air gap and creepage distance:
Air gap: ≥ 0.8 mm
Creepage distance: ≥ 2 mm
Voltage U_{eff}: 63 V
Overvoltage category: II
Rated shock voltage U_{bem}: 0.8 kV
Contamination class: 3

DIN-rail:
DIN EN 60 715 TH35-7.5 or optionally DIN-rail 35 x 15 x 1.5 mm
Shock stability:
Amplitude 0.35 mm; 10 ... 55 Hz DIN EN 60 068-2-6
Swing test: 2 h
Swing direction: 3 axle

Net weight
Spring contact block: approx. 2.5 g / piece
Carrier profile: approx. 115 g / m
BUS cover: approx. 60 g / m
Safety caps (right/left): approx. 0.6 g / piece

Accessories:
- Carrier rail cover for protection of not usable mounting area
- BUS PCBs to customer lengths to max. 1 m with tinned or gold plated PCB rails
- Safety caps for BUS ends

Further features:
- The complete possibilities of the BUS PCB allows:
 * the input of the BUS signal via PCB terminals
 * coupling of two BUS PCB's via terminal strip
 * PCB crossovers with multi-coated PCBs
 * Coding via a coding pin to the spring-contact block via a specific code hole in the BUS PCB

Technical Notes:
- The complete track system shall only be supplied by one isolated power supply or control transformer rated max. 10,000VA or equivalent
- The rail system is intended for the use with spring contact block assemblies and mounting means as designed by the manufacturers mechanical specifications or equivalent
- The spring block assembly must be mechanically secured and soldered to the printed wiring board according to the manufacturers instructions and mechanical design or equivalent
Dimension Spring contact block

PCB support (to pcb thickness t = 1.5)

PCB support (to pcb thickness t = 1)

*) ending with enclosure exterior surface

Configuration of spring contact block

Configuration of spring contact block on PCB seen from lower edge of the enclosure

spring-contact block ending with lower edge of the enclosure

spring-contact block

coding pin (double contact)

BUS system in DIN-rail, 15mm high

BUS system in DIN-rail, 7.5mm high
Drilling plan for appliance PCB

distance h in relation to lower edge of the pcb for different enclosure series
(dimensions h changes with thickness of enclosure bottom)

<table>
<thead>
<tr>
<th>enclosure series</th>
<th>enclosure bottom thickness d</th>
<th>distance $h=0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO4300</td>
<td>2.65</td>
<td>10.4</td>
</tr>
<tr>
<td>KU4000</td>
<td>2</td>
<td>11.05</td>
</tr>
<tr>
<td>KU4100</td>
<td>2.15</td>
<td>10.9</td>
</tr>
<tr>
<td>KO4730-KO4737</td>
<td>2.5</td>
<td>10.55</td>
</tr>
</tbody>
</table>
Mounting instruction

step 1
put in the pre-mounted carrier profile in to the DIN rail

- carrier profile with mounted Bus PCB

step 2
put on the right and left safety cap

- Pay attention to the sequence:
 a) put the cap in from above layed on the carrier profile
 b) shaped the cap on below

- Dismantling in reversed sequence

step 3
snap on the appliance on the In-Rail-Bus

- efficient power to the Bus $F \geq 5N$
 (Per appliance snapped on with contact spring block)

- safety cap on both sides tight to the carrier profile
 The safety cap fixes the carrier profile in the DIN rail and protects the ends of the Bus