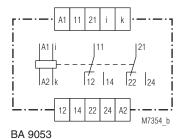
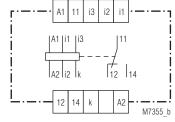
# Überwachungstechnik

VARIMETER Stromrelais BA 9053

## Original




#### Produktbeschreibung

Das Stromrelais BA 9053 der VARIMETER Serie überwacht 1-phasige Gleich- oder Wechselstromnetze. Die Geräteinstellung erfolgt einfach und bedienerfreundlich über Drehschalter an der Gerätefront. Das frühzeitige Erkennen und die präventive Wartung verhindern Ausfälle elektrischer Anlagen und garantieren damit eine höhere Betriebs- und Anlagensicherheit.

## Schaltbilder





BA 9053/4\_\_ z. B.:
Klemmen i1/k: 0,1 ... 1 A
Klemmen i2/k: 0,5 ... 5 A
Klemmen i3/k: 1 ... 10 A

## Anschlussklemmen

| Klemmenbezeichnung | Signalbeschreibung |  |  |
|--------------------|--------------------|--|--|
| A1, A2             | Hilfsspannung      |  |  |
| i, k               | Strom-Messeingang  |  |  |
| 11, 12, 14         | 1. Wechslerkontakt |  |  |
| 21, 22, 24         | 2. Wechslerkontakt |  |  |

#### **Ihre Vorteile**

- · Präventive Wartung
- Für höhere Produktivität
- Schnellere Fehlerlokalisierung
- · Präzise und zuverlässig

#### Merkmale

- Nach IEC/EN 60255-1, IEC/EN 60947-1
- · Zur Überwachung von Gleich- und Wechselströmen
- Messbereiche von 2 mA bis 25 A
- Wahlweise mit 3 Messbereichen 0,1 bis 25 A
- Hohe Überlastbarkeit
- Messfrequenz bis 5 kHz
- · Hilfskreis Messkreis galvanisch getrennt
- Hilfsspannung AC und AC/DC
- · Wahlweise mit Anlaufüberbrückung
- Mit Schaltverzögerung, wahlweise bis 100 s
- Wahlweise mit sicherer Trennung nach IEC/EN 61140 (auf Anfrage)
- · Wahlweise mit Speicherverhalten
- Optional mit festen Einstellungen möglich
- LED-Anzeige für Betriebsbereitschaft und Kontaktstellung
- 45 mm Baubreite

#### Zulassungen und Kennzeichen



1) Zulassung nicht für alle Varianten

## Anwendungen

- Zur Überwachung der Stromaufnahme von elektrischen Verbrauchern
- Für Industrie- und Bahnanwendungen

## Aufbau und Wirkungsweise

Die Relais messen den arithmetischen Mittelwert des gleichgerichteten Messstromes, wobei die Geräte für sinusförmige Wechselströme in Effektivwert abgeglichen sind. An den Geräten kann sowohl der Ansprech- wie auch über die Hysterese der Rückfallwert eingestellt werden. Die Geräte arbeiten als Überstromrelais. Sie können auch als Unterstromrelais eingesetzt werden. Die Abhängigkeit der Hysterese vom Einstellwert ist zu beachten.

2 Schaltverzögerungen sind variantenspezifisch möglich.

Die Anlaufüberbrückung  $t_a$  wirkt nur einmalig nach Anlegen der Hilfsspannung. Mit dieser kann z. B. ein Schaltvorgang, ausgelöst durch einen erhöhten Anlaufstrom eines Motors unterdrückt werden. Die Schaltverzögerung  $t_v$  verzögert das Schalten nach Überschreiten eines Schwellwertes.

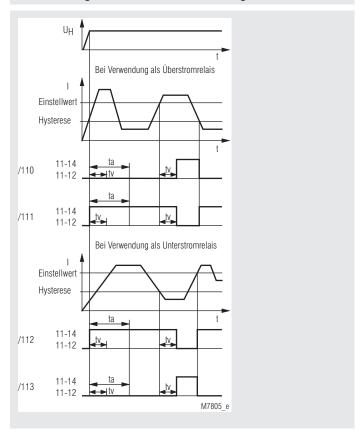
Bei Überstromrelais wirkt die Verzögerung nach Überschreiten des Einstellwertes, bei Unterstromrelais zweckmäßigerweise nach Unterschreiten des Hysteresewertes.

### Geräteanzeigen

Grüne LED: Leuchtet bei

anliegender Betriebsspannung

Gelbe LED: Leuchtet bei aktiviertem Ausgangsrelais


# Funktionsdiagramm ohne Anlaufüberbrückung Einstellwert Hysterese U<sub>H</sub> Bei Verwendung als Überstromrelais 11-14 /010 11-14 /011 11-12 t<sub>V</sub> Bei Verwendung als Unterstromrelais 11-14 /012 11-12 11-14

M5698 o

/013

11-12

## Funktionsdiagramm mit Anlaufüberbrückung



Bei der Ausführung BA 9053/6 $\_$  mit Fehlerspeicherung wird die Kontaktstellung nach erkanntem Fehler, bzw. nach Ablauf von t $_{v}$  gespeichert. Gelöscht wird die Speicherung durch Unterbrechnung der Hilfsspannung

2 23.06.22 de / 597A

#### **Technische Daten**

#### Eingang (i, k)

| ВА                        | 905  | 3 r | mit | jewe | eils | s 1 M           | essb | ereio           | h in /                      | AC <u>und</u>                 | DC |                             |
|---------------------------|------|-----|-----|------|------|-----------------|------|-----------------|-----------------------------|-------------------------------|----|-----------------------------|
| Messbereich <sup>1)</sup> |      |     |     |      |      | 1 <sup>1)</sup> |      | RM<br>(interner |                             | Max. zulässiger<br>Dauerstrom |    | Max. zuläss.                |
|                           | AC   | ;   |     |      |      | DC              |      | wid             | ess-<br>der-<br>and<br>unt) | Gerä<br>anger                 |    | Strom 3 s Ein,<br>100 s Aus |
| 2 -                       | - 20 | o m | ıΑ  | 1,8  | -    | 18              | mΑ   | 1,5             | Ω                           | 0,7                           | A  | 1 A                         |
| 20 -                      | 200  | o m | ıΑ  | 18   | -    | 180             | mΑ   | 0,1             | 5 Ω                         | 2                             | Α  | 4 A                         |
| 30 -                      | 300  | o m | ıΑ  | 27   | -    | 270             | mΑ   | 0,1             | Ω                           | 2,5                           | Α  | 8 A                         |
| 50 -                      | 500  | o m | ıΑ  | 45   | -    | 450             | mΑ   | 0,1             | Ω                           | 2,5                           | Α  | 8 A                         |
| 80 -                      | 800  | o m | ıΑ  | 72   | -    | 720             | mΑ   | 40              | $m\Omega$                   | 4                             | Α  | 12 A                        |
| 0,1-                      |      | 1   | Α   | 0,09 | - (  | 0,9             | Α    | 30              | $m\Omega$                   | 4                             | Α  | 12 A                        |
| 0,5-                      | . į  | 5   | Α   | 0,45 | , -  | 4,5             | Α    | 6               | $m\Omega$                   | 10                            | Α  | 30 A                        |
| 1 -                       | - 10 | О   | Α   | 0,9  | -    | 9               | Α    | 3               | $m\Omega$                   | 20                            | Α  | 40 A                        |
| 1,5-                      | - 18 | 5   | Α   | 1,35 | , -  | 13,5            | Α    | 3               | $m\Omega$                   | 25                            | Α  | 40 A                        |
| 2 -                       | 20   | )   | Α   | 1,8  | -    | 18              | Α    | 3               | $m\Omega$                   | 25                            | Α  | 40 A                        |
| 2,5                       | - 2  | 5   | Α   | 2,25 | j -  | 22,5            | Α    | 3               | $m\Omega$                   | 25                            | A  | 40 A                        |
|                           |      |     |     |      |      |                 |      |                 |                             |                               |    |                             |

1) Gleich- oder Wechselstrom 50 ... 5000 Hz (Andere Frequenzbereiche von 10 ... 5000 Hz, z. B. 16  $^2/_3$  Hz auf Anfrage)

| BA 9053/4        | mit jeweils 3 Messbereichen: |               |                |  |  |  |
|------------------|------------------------------|---------------|----------------|--|--|--|
| Bereich:         | Klemmen i1/k                 | Klemmen i2/k  | Klemmen i3/k   |  |  |  |
| AC 20 mA /       | AC 2,0 20 mA                 | AC 20 200 mA  | AC 0,1 1 A     |  |  |  |
| 200 mA / 1A:     | DC 1,8 18 mA                 | DC 18 180 mA  | DC 0,09 0,9 A  |  |  |  |
| AC 1/5/10A:      | AC 0,1 1 A                   | AC 0,5 5 A    | AC 1,0 10 A    |  |  |  |
| AC 1/5/10A.      | DC 0,09 0,9 A                | DC 0,45 4,5 A | DC 0,9 9 A     |  |  |  |
| AC 5 / 10 / 25A: | AC 0,5 5 A                   | AC 1,0 10 A   | AC 2,5 25 A    |  |  |  |
| AC 5 / 10 / 25A: | DC 0,45 4,5 A                | DC 0,9 9 A    | DC 2,25 22,5 A |  |  |  |

Messbereichserweiterung: Für Gleichströme, die über den größten

Messbereich hinausgehen, können die Messbereiche 15 ... 150 mV oder 6 ... 60 mV vom BA 9054 und MK 9054N mit externem Shunt verwendet werden. Für Wechselströme, die über den größten Messbereich hinausgehen, verwendet man auch Stromwandler. Zum Beispiel mit Sekundärstrom von 1 A oder 5 A. Die Leistung des Wandlers

sollte ≥ 0.5 VA sein.

Arithmetischer Mittelwert Messung:

Die Wechselstromgeräte können auch

Gleichströme überwachen.

Dabei verschiebt sich die Skaleneichung

um den Formfaktor:  $(\overline{I} = 0.90 I_{eff})$ 

Temperatureinfluss: < 0.05 % / K

Abgleich:

#### **Technische Daten**

#### Einstellbereiche

Einstellung

Ansprechwert: Stufenlos 0,1 I<sub>N</sub> ... 1 I<sub>N</sub> Relativskala

Rückfallwert Stufenlos 0,5 ... 0,98 des Ansprech-Bei AC:

(Hysterese)wertes

Bei DC: stufenlos 0,5 ... 0,96 des Ansprech-

(Hysterese)wertes

Genauigkeit:

Ansprechwert bei

Drehschalter Rechtsanschlag

(max):

Drehschalter Linksanschlag

(min):

Wiederholgenauigkeit (konstante Parameter):

Wiederbereitschaftszeit Bei Geräten mit Speicher-

verhalten (Reset durch Unterbrechung der Hilfsspannung)

BA 9053/6\_\_:

< 1 s

(Abhängig von Funktion und Hilfsspannung) Schaltverzögerung t :

0 .... + 8 %

≤±0.5 %

- 10 .... + 8 %

Stufenlos an logarithmischer Skala

einstellbar von

0 ... 20 s, 0 ... 30 s, 0 ... 60 s, 0 ... 100 s Einstellung 0 s = ohne Schaltverzögerung

Anlaufüberbrückung t<sub>a</sub>:

BA 9053/1 \_ \_: 1 ... 20 s; 1 ... 60 s; 1 ... 100 s,

an logarithmischer Skala einstellbar. t wird mit Anlegen der Hilfsspannung gestartet. Während des Zeitablaufs ist der Ausgangskontakt im Gutzustand.

#### Hilfsspannung U<sub>H</sub> (A1, A2)

| Nennspannung   | Spannungsbereich | Frequenzbereich      |  |  |
|----------------|------------------|----------------------|--|--|
| AC/DC 24 80 V  | AC 18 100 V      | 45 400 Hz; DC 48 % W |  |  |
| AC/DC 24 80 V  | DC 18 130 V      | W ≤ 5 %              |  |  |
| AC/DC 80 230 V | AC 40 265 V      | 45 400 Hz; DC 48 % W |  |  |
| AC/DC 80 230 V | DC 40 300 V      | W ≤ 5 %              |  |  |

| Nennspannung | Spannungsbereich | Frequenzbereich  |  |  |
|--------------|------------------|------------------|--|--|
| DC 12 V      | DC 10 18 V       | Batteriespannung |  |  |

4 VA: 1.5 W bei AC 230 V Rel. bestromt Nennverbrauch:

1 W bei DC 80 V Rel. bestromt

## BA 9053 Hilfsspannung U<sub>H</sub> (A1, A2) für Monospannungen

AC 110, 120, 230, 240, 400 V Nennspannungen:

0,8 ... 1,1 U<sub>H</sub> Spannungsbereich: Nennfrequenz: 50 / 60 Hz Frequenzbereich:  $\pm\,5$  % Nennverbrauch: 2,5 VA

#### **Ausgang**

Kontaktbestückung: 2 Wechsler Thermischer Strom I,: 2 x 5 A

Schaltvermögen

nach AC 15:

Schließer: 2 A / AC 230 V IEC/EN 60947-5-1 Öffner: 1 A / AC 230 V IEC/EN 60947-5-1 nach DC 13: 1 A / DC 24 V IEC/EN 60947-5-1

Elektrische Lebensdauer

bei 3 A, AC 230 V  $\cos \varphi = 1$ : 2 x 105 Schaltspiele

Kurzschlussfestigkeit

max. Schmelzsicherung: 6 A gG/gL IEC/EN 60947-5-1

Mechanische Lebensdauer: 30 x 10<sup>6</sup> Schaltspiele

3 23.06.22 de / 597A

#### **Technische Daten**

#### Allgemeine Daten

Dauerbetrieb Nennbetriebsart:

Temperaturbereich

Betrieb

- 40 ... + 60 °C ≤ 10 A: - 40 ... + 50 °C ≥ 15 A:

(höhere Temperaturen mit Einschränkungen auf Anfrage)

- 40 ... + 70 °C Lagerung:

Betriebshöhe: ≤ 2000 m

Luft- und Kriechstrecken Bemessungsstoßspannung/ Verschmutzungsgrad Messbereich ≤ 10 A

Hilfsspannung / Messeingang: 6 kV / 2 IEC 60664-1 Hilfsspannung / Kontakte: 6 kV / 2 IEC 60664-1 Messeingang / Kontakte: 6 kV / 2 IEC 60664-1 Kontakte 11,12,14 / 21, 22, 24: 4 kV / 2 IEC 60664-1 Messbereich ≥ 15 A: 4 kV / 2 IEC 60664-1

**EMV** 

Statische Entladung (ESD): 8 kV (Luftentladung) IEC/EN 61000-4-2

HF-Einstrahlung

80 MHz ... 1 GHz: 20 V/m IEC/EN 61000-4-3 1 GHz ... 2,7 GHz: 10 V/m IEC/EN 61000-4-3 Schnelle Transienten: 4 kV IEC/EN 61000-4-4

Stoßspannungen (Surge)

zwischen

Versorgungsleitungen: IEC/EN 61000-4-5 2 kV Zwischen Leitung und Erde: 4 kV IEC/EN 61000-4-5 HF-leitungsgeführt 10 V IEC/EN 61000-4-6 Funkentstörung: Grenzwert Klasse B EN 55011

Schutzart

IP 40 Gehäuse: IEC/EN 60529 Klemmen: IP 20 IEC/EN 60529

Gehäuse: Thermoplast mit V0-Verhalten

nach UL Subjekt 94

Rüttelfestigkeit: Amplitude 0,35 mm

Frequenz 10 ... 55 Hz, IEC/EN 60068-2-6 IEC/EN 60068-1

Klimafestigkeit: ≤ 10 A: 40 / 060 / 04

≥ 15 A: 40 / 050 / 04

Klemmenbezeichnung: **DIN EN 50005** 

Leiteranschlüsse DIN 46228-1/-2/-3/-4

2 x 2,5 mm<sup>2</sup> massiv oder 2 x 1,5 mm<sup>2</sup> Litze mit Hülse

unverlierbare Plus-Minus-Klemmen-Leiterbefestigung:

200 g

schrauben M 3,5 mit selbstabhebender IEC/EN 60999-1 Anschlussscheibe

IEC/EN 60715

Abisolierlänge der Leiter: 10 mm Anzugsdrehmoment: 0,8 Nm

Schnellbefestigung: Hutschiene

Nettogewicht:

280 g AC-Geräte: AC/DC-Geräte:

Geräteabmessungen

Breite x Höhe x Tiefe: 45 x 75 x 120 mm

#### Klassifizierung nach DIN EN 50155 für BA 9053

IEC/EN 61373 Schwingen und Schocken: Kategorie 1, Klasse B

Betriebstemperaturklassen: OT1, OT2 konform

OT3 und OT4 mit Einschränkungen

Schutzlackierung Leiterplatte: Nein

**CCC-Daten** 

Thermischer Strom I,: 5 A

Schaltvermögen

nach AC 15: 2 A / AC 230 V IEC/EN 60 947-5-1 nach DC 13: 1 A / DC 24 V IEC/EN 60 947-5-1

Fehlende technische Daten, die hier nicht explizit angegeben sind, sind aus den allgemein gültigen technischen Daten zu entnehmen.

## Standardtypen

BA 9053/010 AC 1,5 ... 15 A AC/DC 80 ... 230 V

Artikelnummer: 0057178

Für Überstromüberwachung

Messbereich: AC 1,5 ... 15 A Hilfsspannung U<sub>H</sub>: AC/DC 80 ... 230 V

Schaltverzögerung bei Ian: 0 ... 20 s

Baubreite: 45 mm

BA 9053/012 AC 1,5 ... 15 A AC/DC 80 ... 230 V Artikelnummer: 0061256

Für Unterstromüberwachung

Messbereich: AC 1,5 ... 15 A

Hilfsspannung U<sub>H</sub>: AC/DC 80 ... 230 V

 Schaltverzögerung bei I<sub>ab</sub>: 0 ... 20 s Baubreite: 45 mm

4 23.06.22 de / 597A

#### Bestellbeispiel für Varianten

BA 9053 /\_\_\_\_ AC 1 ... 10 A AC 24 V 0 ... 20 s 1 ... 20 s

Anlaufüberbrückung t<sub>a</sub> - Schaltverzögerung t<sub>v</sub>

Hilfsspannung

Messbereich

- 10 Überstromrelais Arbeitsstromprinzip Schaltverzögerung bei Einstellwert
- 11 Überstromrelais Ruhestromprinzip Schaltverzögerung bei Einstellwert
- 12 Unterstromrelais Ruhestromprinzip Schaltverzögerung bei Hysteresewert
- 13 Unterstromrelais Arbeitsstromprinzip Schaltverzögerung bei Hysteresewert
- Grundausführung
   Mit Anlaufüberbrückung t<sub>a</sub>
- 130 Überstromrelais
  Arbeitsstromprinzip
  Schaltverzögerung
  bei Einstellwert
  mit Anlaufüberbrückung t
  sichere Trennung
  bis 10 A
- 2 Mit sicherer elektrischer Trennung von Eingangs- und Ausgangskreis nach DIN 61140 (auf Anfr.)

Messbereiche bis ≤ 10 A: DIN EN 60947-1; 4 kV/2 bezogen auf die Überspannungskategorie III mit einer Basisisolation gemäß DIN EN 60664-1 von 4 kV;

Messbereiche ≥ 15 A: Überspannungskategorie II mit einer Basisisolation von 2,5 kV

- 4 Mit 3 Strommessbereichen, 1 Wechsler
- 431 Mit 3 Strommessbereichen, 1 Wechsler, sichere Trennung bis 10 A
- 6 Mit Speicherverhalten, Fehlerquittierung durch Unterbrechung der Hilfsspannung

Gerätetyp

#### Geräteeinstellung

Beispiel:

Stromrelais AC 0,5 ... 5 A

AC gemäß Typenschildangabe: d.h., das Gerät ist für Wechselstrom abgeglichen 0,5 ... 5 A = Messbereich

Ansprechwert AC 3 A Rückfallwert AC 1,5 A

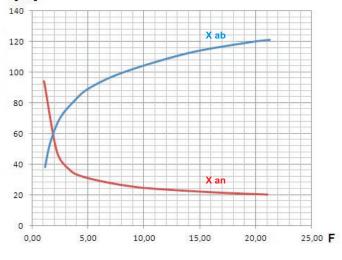
Einstellungen

Oberer Drehschalter: 0,6  $(0,6 \times 5 \text{ A} = 3 \text{ A})$ Unterer Drehschalter: 0,5  $(0,5 \times 3 \text{ A} = 1,5 \text{ A})$ 

Wechselstromgeräte sind auch für die Überwachung von Gleichströmen geeignet. Dabei verschiebt sich die Skaleneichung um den Formfaktor  $\overline{I}=0,9$  x  $I_{\rm off}$ 

AC 0,5 ... 5 A entspricht DC 0,45 ... 4,5 A

Ansprechwert DC 3 A Rückfallwert DC 1,5 A


Einstellungen

Oberer Drehschalter: 0,66 (0,66 x 4,5 A = 3 A) Unterer Drehschalter: 0,5 (0,5 x 3 A = 1,5 A)

5 23.06.22 de / 597A

#### Kennlinie

## t [ms]



#### Verzögerung t durch Messwertauswertung

X an: Messgröße steigt an 
$$F = \frac{\text{Messwert (nach Messwertanstieg)}}{\text{Einstellwert}}$$

$$\mbox{X ab: Messgröße f\"{a}llt ab} \qquad \mbox{F} = \frac{\mbox{Messwert (vor Messwertabfall)}}{\mbox{Einstellwert (Hystereseschaltpunkt)}}$$

Das Diagramm zeigt die typische Verzögerung eines Standard-Gerätes in Abhängigkeit von den Messgrößen "X an und X ab" bei plötzlichem Ansteigen oder Abfallen der Messgröße. Bei langsamer Änderung der Messgröße verringert sich die Verzögerung.

Die gesamte Reaktionszeit des Messrelais ergibt sich aus der Summe der einstellbaren Schaltverzögerung  $t_{_{\rm V}}$  und der Verzögerung  $t_{_{\rm V}}$  bedingt durch die Messwertauswertung.

Das Diagramm zeigt eine mittlere Zeitverzögerung. Die Zeitverzögerung kann je nach Variante geringfügig abweichen.

#### Beispiel zu X an (Überstromüberwachung mit BA 9053/010):

Eingestellt ist ein Schaltpunkt X an = 2A.

Durch Blockieren eines Motors steigt der Strom plötzlich auf 10 A.

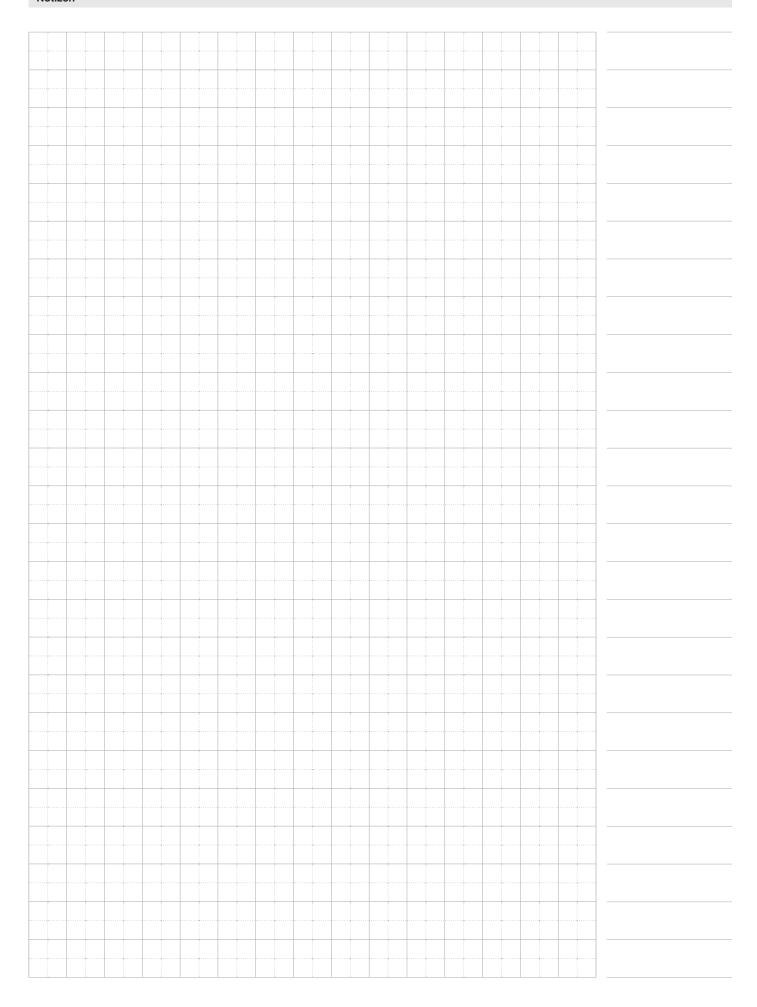
$$F = \frac{\text{Messwert (nach Messwertanstieg)}}{\text{Finstellwert}} = \frac{10 \text{ A}}{2 \text{ A}} = 5$$

Aus Diagramm:

Das Ausgangsrelais wird bei Einstellung t = 0 nach ca. 31 ms aktiviert.

## Beispiel zu X ab (Unterstromüberwachung mit BA 9053/012):

Eingestellt ist ein Hystereseschaltpunkt von 10 A.


Der Strom fällt plötzlich von 23 A auf 0 A.

$$F = \frac{\text{Messwert (vor Messwertabfall)}}{\text{Einstellwert (Hystereseschaltpunkt)}} = \frac{23 \text{ A}}{10 \text{ A}} = 2,3$$

Aus Diagramm:

Das Ausgangsrelais wird bei Einstellung  $t_{\rm v}$  = 0 nach ca. 70 ms deaktiviert.

6 23.06.22 de / 597A



7

| E. Dold & Söhne GmbH & | Co. KG • D-78120 F | urtwangen • Breg | gstraße 18 • Telefon | +49 7723 654-0 • | Fax +49 7723 654356 |
|------------------------|--------------------|------------------|----------------------|------------------|---------------------|